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ABSTRACT: Reliable quantitative precipitation estimation with a rich spatiotemporal resolution is vital for understand-
ing the Earth’s hydrological cycle. Precipitation estimation over land and coastal regions is necessary for addressing the
high degree of spatial heterogeneity of water availability and demand, and for resolving the extremes that modulate and
amplify hazards such as flooding and landslides. Advancements in computation power along with unique high spatiotempo-
ral and spectral resolution data streams from passive meteorological sensors aboard geosynchronous Earth-orbiting
(GEO) and low Earth-orbiting (LEO) satellites offer exciting opportunities to retrieve information about surface precipita-
tion phenomena using data-driven machine learning techniques. In this study, the capabilities of U-Net–like architecture
are investigated to map instantaneous, summertime surface precipitation intensity at the spatial resolution of 2 km. The
calibrated brightness temperature products from the Global Precipitation Measurement (GPM) Microwave Imager (GMI)
radiometer are combined with multispectral images (visible, near-infrared, and infrared bands) from the Advanced
Baseline Imager (ABI) aboard the GOES-R satellites as main inputs to the U-Net–like precipitation algorithm. Total pre-
cipitable water and 2-m temperature from the Global Forecast System (GFS) model are also used as auxiliary inputs to the
model. The results show that the U-Net–like algorithm can capture fine-scale patterns and intensity of surface precipitation
at high spatial resolution over stratiform and convective precipitation regimes. The evaluations reveal the potential of
extracting relevant, high spatial features over complex surface types such as mountainous regions and coastlines. The algo-
rithm allows users to interpret the inputs’ importance and can serve as a starting point for further exploration of precipita-
tion systems within the field of hydrometeorology.
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1. Introduction

Conventional in situ gauges and weather radars are the
most reliable resources for measuring surface precipitation.
However, the uneven distribution of the ground-based instru-
ments is insufficient to fully capture temporal and spatial vari-
ability of the precipitation phenomena. In recent decades,
extending observational capabilities through meteorological
satellites has provided sustained information that promotes
high-spatiotemporal-resolution precipitation retrievals on a
global scale and addresses the shortcomings of conventional
precipitation measurements (Skofronick-Jackson et al. 2017;
Kidd and Levizzani 2011). Satellite precipitation estimation algo-
rithms offer pivotal data for water resource management, natural
hazard monitoring, and forecasts. However, intercomparison of
high-spatiotemporal-resolution surface precipitation products has
shown significant discrepancies and limitations in different regions
(You et al. 2020; Saemian et al. 2021; Beck et al. 2019; Gorooh

et al. 2022b; Mallakpour et al. 2022). Precipitation is a conse-
quence of highly dynamical processes and, therefore, frequent ob-
servations are essential for capturing the evolving features of its
environment. The current constellation of satellite passive micro-
wave (PMW) radiometers on low-Earth-orbit (LEO) platforms is
insufficient for monitoring the evolution of rapid precipitation
events. Due to the coarse spatial resolution of PMW observations,
their associated retrievals have limited skills in capturing fine spa-
tial patterns of surface precipitation rates over nonhomogeneous
surface types (Utsumi et al. 2021; You et al. 2020). Still, PMW re-
trievals are the backbone of global precipitation monitoring and
have successfully delivered rainfall estimates since the early 1980s.
One example is the state-of-the-art NASA’s Goddard profiling
(GPROF) algorithm (Kummerow et al. 2015) serving various
PMW sensors in the Global Precipitation Measurement (GPM)
mission, delivering consistent estimates of vertical profiles and
surface precipitation.

Another category of meteorological passive sensors is aboard
geostationary satellite (GEO). These sensors are mainly sensitive
to the visible (VIS) and infrared (IR) parts of the electromagnetic
spectrum, offer quasi-global coverage in high spatiotemporal res-
olution with a latency lower than 15 min. Although the products
from GEO sensors mostly rely on cloud-top properties, their
virtually continuous monitoring makes them suitable for near-
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real-time and high-spatial-resolution precipitation estimation pur-
poses. The Self-Calibrating Multivariate Precipitation Retrieval
(SCaMPR; Kuligowski et al. 2016), the Precipitation Estimation
from Remotely Sensed Information Using Artificial Neural Net-
works (PERSIANN; Hsu et al. 1997; Hong et al. 2004; Nguyen
et al. 2020a; Sorooshian et al. 2000), and the Hydro-Estimator
(HE; Scofield and Kuligowski 2003) are widely used, operational,
GEO-based precipitation retrieval algorithms that employ a lim-
ited range of IR measurements as their primary inputs. In recent
years, the advanced generation of GEO passive sensors, such as
the Advanced Baseline Imager (ABI) on the GOES-R satellite
series, the Advanced Himawari Imager (AHI) on Himawari-8/9,
and the Advanced Meteorological Imager (AMI) aboard
GEO-KOMPSAT-2A satellites, has introduced measurement of
the reflected and emitted radiances of a higher number of spec-
tral bands. These sensors provide multispectral information at a
spatial resolution of 0.5–2 km with 5–15-min temporal sampling
(Schmit et al. 2017). Although high spatiotemporal data streams
from the latest GEO sensors are highly attractive, their complete
spectral information is underutilized in precipitation applications
(Upadhyaya et al. 2022b).

Over the past 40 years, the development of precipitation al-
gorithms using different satellite remotely sensed information
has been an ongoing effort (Adler et al. 1993; Arkin and
Ardanuy 1989; Hsu et al. 1997; Joyce et al. 2004; Aonashi et al.
2009; Foufoula-Georgiou et al. 2020; Hong et al. 2004; Nguyen
et al. 2020b; Ferraro 1997; Kummerow et al. 2015). Recent fast-
growing advancements in satellite remote sensing technologies,
along with the unprecedented growth of promising machine
learning applications (especially in Earth system sciences), offer
attractive opportunities for improving the accuracy of precipita-
tion products. Examples include, but are not limited to, the use
of random forest (RF; Ouallouche et al. 2018; Upadhyaya et al.
2022b) and neural networks (NNs; Akbari Asanjan et al. 2018;
Sadeghi et al. 2020; Meyer et al. 2017; Upadhyaya et al. 2022a;
Pfreundschuh et al. 2022). Behrangi et al. (2009) demonstrate
the improvements in delineating rain/no-rain areas obtained by
adding VIS channels in conjunction with near-infrared (NIR)
channels from the GOES-13 imager to an NN-based model.
Hirose et al. (2019) and Min et al. (2019) present RF-based al-
gorithms that use NIR and IR brightness temperatures (Tbs)
from AHI for precipitation quantification. Hayatbini et al.
(2019) use a combination of ABI information to develop an ad-
vanced NN-based surface precipitation retrieval algorithm. For
PMW precipitation algorithms, similar improvements are docu-
mented. Passive Microwave Neural Network Precipitation Re-
trieval (PNPR) by Sanò et al. (2016) and the work by Li et al.
(2021) are among the more recent NN-based, PMW-retrieving
precipitation algorithms. Research on the operational GPROF
algorithm presents an outstanding potential for modern NN ap-
proaches to improve the accuracy and effective resolution of re-
trieved surface precipitation rates and hydrometeor profiles
from GPM PMW observations (Pfreundschuh et al. 2022). Re-
cently, Gorooh et al. (2022a) introduced a deep neural network
(DNN) framework that fuses a single IR channel (;10 mm)
from GEO platforms with LEO PMW measurements to re-
trieve high-spatiotemporal-resolution surface precipitation. Ac-
cording to the results from their Deep Neural Network High

Spatiotemporal Resolution Precipitation (Deep-STEP) Model,
there is a promising opportunity for capturing fine-scale precipi-
tation patterns over complex surface types. Their algorithm can
achieve similar or better surface precipitation estimates than the
operational NASA Integrated Multi-satellitE Retrievals for the
GPM mission (IMERG) V06 early run and Microwave Imager
(GMI) GPROF V05 algorithms during both warm and cold sea-
sons of year. However, Deep-STEP faces challenges in surface
precipitation detection during warm months.

Upon literature review, motivated by the shortcomings of
the studies listed above, it has been noted that no documented
study attempts to utilize complete and direct information con-
tent provided by all available passive satellite sensors covering
VIS, NIR, and IR parts of the electromagnetic spectrum as
well as the emission and scattering frequencies from passive
microwave bands to derive high-resolution surface precipita-
tion rates. This study aims to develop a DNN framework that
fuses the existing passively sensed information from GEO and
LEO satellites with respect to the spatiotemporal properties
of summertime precipitation systems with a goal to test this
unexplored opportunity. Specifically, we aim to address two
questions: 1) What are the potentials of implementing DNNs
that use ultimate information from LEO PMW radiometers, mul-
tispectral observations from GEO satellites, and ancillary varia-
bles from numerical weather prediction models to improve
surface precipitation retrievals during summertime? And 2) Can
a simple end-to-end DNN model integrating multiple sources of
information in near-real time offer a comparable performance to
that of the current state-of-the-art precipitation algorithms? To
seek answers to these questions, the study targets the develop-
ment of a U-Net–like precipitation algorithm for a wide range of
VIS, NIR, and IR images from ABI sensors (0.47–13 mm) com-
bined with PMW Tbs from the GMI radiometer (10–183 GHz),
along with the ancillary variables (2-m temperature and total col-
umn atmosphere precipitable water) from the Global Forecast
System (GFS). Then, the retrieved precipitation rates from our
model are evaluated over various surface types and over strati-
form and convective regimes. The capabilities of our DNNmodel
are presented along with the performance of operational, global-
scaled satellite precipitation algorithms to assess how close we
can get to these highly specialized and widely used precipitation
retrievals. Following the introduction, this paper is organized as
follows: Section 2 presents the data sources and study area.
Section 3 introduces a U-Net–like architecture and explains the
methodology, followed by the results and discussion in section 4.
Finally, section 5 summarizes the investigation and provides con-
cluding remarks.

2. Data and study region

A variety of datasets with different spatial and temporal
resolutions, including passive remotely sensed information
from GEO and LEO satellites, active sensors on LEO satel-
lites, numerical weather prediction models, and precipitation
products from satellite and ground-based platforms, are used
in the investigations documented here. Given the availability
of high-quality reference data, as indicated by the quality indi-
ces, the study considers the months June–September in a 4-yr
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period (2017–20) over the eastern contiguous United States
(CONUS) and parts of the North Atlantic Ocean near a
coastal region (1058–608W and 208–458N).

a. ABI data

ABI is a unique 16-band radiometer with spectral bands
covering the electromagnetic spectrum at VIS, NIR, and IR
frequencies. The ABI aboard the GOES-16 satellite scans the
CONUS every 5 min in two VIS bands: 0.47 and 0.64 mm,
with approximate 1- and 0.5-km spatial resolution, respec-
tively. The emitted radiances from four NIR bands}0.86,
1.37, 1.6, and 2.2 mm}and 10 IR bands}3.9, 6.2, 6.9, 7.3, 8.4,
9.6, 10.3, 11.2, 12.3, and 13.3 mm}are measured with approxi-
mate 2-km spatial resolution, except for the 1-km resolution
channels at 0.86 and 1.61 mm (Schmit et al. 2017). This study uses
the high spatial and temporal resolution NOAA Level-2 Cloud
and Moisture Imagery product (CMIP) from the GOES-16 ABI
to obtain the radiances and Tbs at all 16 bands.

b. Solar altitude angle

In this study, solar altitude angle is used to address the ef-
fects of the sun’s position on GEO-based measured radiances.
ABI observes Earth at a fixed-view angle. Yet, the solar angle
at a given pixel is a function of the latitude and local time.
With the assumption that GOES-16 ABI is located at a fixed
point above Earth, the instantaneous solar altitude angle is
calculated for each ABI pixel (Wang et al. 2020; Ma et al.
2020; Kalogirou 2022).

c. GMI measurements

The GMI aboard the GPM Core Observatory (GPM-CO)
satellite is a conical scanning radiometer that provides Tbs in
two different scanning geometries. Swath S1 has a width of
approximately 931 km and covers the microwave frequencies
at nine channels and both vertical (V) and horizontal (H) po-
larizations: 10.65V/H, 18.7V/H, 23.8V, 26.6V/H, and 89V/H
GHz. Swath S2 has a width of approximately 825 km, provid-
ing measurements at frequencies of 166V/H, 183.3 6 3V, and
183.3 6 7V GHz. Resampled Tbs, delivered by the GMI
L1CR (version 07) product, in both emission and scattering fre-
quencies, are used in the present study. The spatial resolution
of GMI’s field of view (FOV) varies from 32.1 km 3 19.4 km
for the 10V GHz channel to 5.6 km 3 3.8 km for the 183.3 6

3V GHz channel (Hou et al. 2014; Draper et al. 2015;
Skofronick-Jackson et al. 2017).

d. GFS variables

In addition to GMI and ABI observations, 2-m temperature
(T2m) and total column precipitable water (PWAT) variables
from the National Centers for Environmental Prediction (NCEP)
GFS model are used as ancillary inputs to the neural network
framework. GFS output is available at 3-hourly time-step incre-
ments for the forecast products. The study combines GFS varia-
bles with high-spatiotemporal-resolution surface precipitation
using GFS analysis at 0000, 0600, 1200, and 1800 UTC and fore-
cast fields at 0300, 0900, 1500, and 2100 UTC at 0.258 spatial
resolution.

e. Multi-radar multi-sensor

NASA Global Hydrology Resource Center provides the
state-of-the-art GPM Ground Validation Multi-Radar Multi-
Sensor (GV-MRMS) reanalysis at 1-km spatial resolution. This
product combines Weather Surveillance Radar-1988 Doppler
(WSR-88D) data with rain gauges, satellite, and environmental
variables to deliver highly accurate quantitative precipitation es-
timates over the CONUS and parts of Canada (Kirstetter et al.
2012; Zhang et al. 2016). We used 2-min MRMS surface precipi-
tation rates and a radar quality index (RQI) to establish a
benchmark surface precipitation rate in this study.

f. Passive and active microwave precipitation products

PMW-based surface precipitation estimates from the opera-
tional, Bayesian-based GPROF version 07 retrieval (Kummerow
et al. 2015), provided by the GPM Precipitation Processing Sys-
tem (2AGPROFGMI), and the recent NN-based GPROF
(GPROF-NN 3D; Pfreundschuh et al. 2022), are used as a bench-
mark throughout the present study. Moreover, surface precipita-
tion rates from GPMDual-Frequency Precipitation Radar (DPR)
product (2AGPMDPR, version 7) are presented in the investiga-
tion to highlight the differences between active- and passive-based
rain-rate products.

3. Methodology

a. U-Net–like architecture

A fully convolutional model with U-Net architecture is in-
troduced by Ronneberger et al. (2015) for biomedical image
segmentation. In this study, we use similar architecture on sat-
ellite passively sensed information to retrieve surface precipi-
tation. Here, the supervised learning problem can be stated as
d: I" O, where domain I represents the input space}including
VIS, NIR, IR, and PMW observations as well as GFS variables}
and codomain O represents the output space (precipitation rate).
The true d operator can be approximated by findingY5 f(X;Q),
where Y 2 O and X 2 I. The f() model is trained using N labeled
training dataset {Xi, Yi}, i 5 1, … , N and Q is the trainable pa-
rameter of model f().

Figure 1 displays a schematic for the U-Net–like architecture,
which consists of encoder, bottleneck, and decoder parts. The
arrangement of the elements of each component is important
for accomplishing sustained high performance while the model
automatically learns complex features from the input datasets.
In our U-Net–like model (hereafter, U-Net), the encoder blocks
consist of a set of 2D kernels (kernel size 5 5 3 5) with the
same padding option, batch normalization, elementwise leaky
rectified linear unit (ReLU) activation function, and maxpoo-
ling2D (pool size 5 2 3 2) layers. These blocks downsample
the input information to extract the detailed feature maps from
their inputs. Kernels convolve over input layers and tune the
learnable paraments by calculating loss function gradients with
respect to each kernel weight. The maxpooling layer subsamples
the maximum value of a sampling window to learn translation
invariant features while reducing the encoder’s computational
complexity. The leaky ReLU function alleviates the “dying
ReLU” problem. In the training of deep convolutional NNs
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(CNNs), an ReLU-based neuron can be trapped in negative
values (especially in significant negative biases) and yield
zero values. In such a scenario, these types of neurons do not
perform well (discriminating the input), leading to the ineffi-
ciency of a large part of the CNN. The leaky ReLU function
is defined as

f (ø) 5 max {0:01ø,ø} (1)

In this case, the function f returns positive input (ø), whereas it re-
turns a small value (0.01ø) for negative input. Thus, this function
prevents the CNN model’s deactivated regions (dead regions).
After the encoder, the bottleneck receives highly condensed (low-
dimensional) information from the input images. The decoder in-
cludes upsampling2D (upsampling size 5 2 3 2), concatenate,
batch normalization, and activation function (leaky ReLU) layers
to expand the feature maps. The concatenate (skip connection)
layer is a unique property of the U-Net algorithm that connects
the preserved structural features from learned latent encoding to
the decoding parts. This layer concatenates two same-level feature
blocks (encoding features with decoding features) in the model
and alleviates the vanishing gradient challenge in NN algorithms
(Ehsani et al. 2021).

After the decoder, one convolutional layer with an ReLU
activation function is typically used to retrieve the precipita-
tion rates with the same size as the input. The 2D convolu-
tional layer can be defined by

Y[i, j] 5∑
n
∑
m
K[m, n]X[i 2 m, j 2 n], (2)

where Y is the result of the convolution of kernelK over input
X, and m and n are dummy variables of the integration. The
same padding option in the convolutional layers appends zero

values in the outer part of the input layers in order to con-
serve the size of the convolution layer output identical to the
input layer. Figure 2 illustrates the convolution of an arbitrary
2 3 2 kernel across a 4 3 4 input with the same padding op-
tion. In fully convolutional algorithms, once the kernels and
learnable parameters are defined (i.e., the model is trained), the
model can operate and produce the appropriate dimension out-
put according to the corresponding input (here, image-to-image
conversion). “Equivariance to translation,” “sparse connectivity,”
and “parameter sharing” properties of fully CNNs models
(Goodfellow et al. 2016) enable the trained kernels to capture
local and meaningful features when processing an input image,
irrespective of their size.

b. Data sampling and integration

This study combines various types of information of different
spatial and temporal resolutions originating from passive GEO
and LEO satellite sensors, as well as the GFS model. Following
the data integration strategy of Gorooh et al. (2022a), the near-
est neighbor approach (Rukundo and Cao 2012) is employed to
resample the swath datasets into a fixed 2-km grid. While poten-
tial errors from different interpolation strategies in the resampling
procedure may occur, we estimate their impacts on the results
presented here are insignificant. Figure 3 illustrates a schematic
for the data preprocessing framework. Based on LEO orbital
tracks (GMI PMWFOVs), the coordinated universal time (UTC)
associated with the scan time is used to extract the closest 5-min
GEO readings (VIS, NIR, and IR images from ABI), 3-hourly
ancillary data from the GFS model (PWAT and T2m) and 2-min
MRMS retrievals in their original spatial resolutions are selected.
The spatial intersections of each of the datasets with the LEO or-
bital swaths are collocated and resampled into the 2-km grids. The
nearest-neighbor approach is used for swath-to-grid conversions,
with the bilinear interpolation approach for grid-to-grid resam-
pling tasks.

FIG. 1. U-Net–like architecture schematic. The encoder extracts robust features from input images, the decoder
constructs the output patterns and pixel values, and the bottleneck is the connection between the encoder and de-
coder parts of the model.
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With a goal to allow for the largest possible input features,
given GMI swath width, the availability of spatially uniform
high-quality reference products, the size of the model (train-
able parameters), and the required computational power, the
training dataset is generated using 128 km 3 128 km patched
samples. The collocated GMI Tbs, ABI reflectance and Tbs,
GFS variables (PWAT, T2m), and MRMS surface precipitation
rates for the areas with RQI values greater than 0.8 are orga-
nized into 64 3 64 pixel samples. These data patches are nor-
malized and partitioned into the training, validation, and test
subsets corresponding to nonoverlapping time periods. We used
80% and 20% of samples from May to September 2017–19
for training and validation purposes, respectively, while June–
September of 2020 is considered an independent test period. No
efforts are made to produce a balanced dataset.

A fully CNN with U-Net architecture is tasked to retrieve
surface precipitation rates at 2-km spatial resolution. Based on
sensitivity analyses and the availability of data (e.g., number of
missing values, low quality index), GMI channels 2, 3, and 13, as
well as ABI channels 5, 12, 15, and 16 are excluded from the list
of the input features. Moreover, it has been found that using sur-
face-type ancillary information [e.g., monthly emissivity climatol-
ogy, Tool to Estimate Land Surface Emissivities at Microwave
Frequencies (TELSEM); Prigent et al. 2003; Aires et al. 2011] in
addition to low frequencies has an insignificant impact on the
model’s overall performance, while the number of learnable pa-
rameters and memory utilization during the training was in-
creased. Their effects on the training process and accuracy of the
retrieved surface precipitation estimates are insignificant. After
the data sampling and integration, the dataset counts approxi-
mately 110000 available samples (patches) for model training
and validation. The information from the GMI and ABI sensors,
along with GFS variables used as input, is listed in Table 1.

c. Surface precipitation estimation algorithm

As described above, a fully convolutional model with U-Net
architecture (Fig. 1) is used to retrieve surface precipita-
tion. In our study, adaptive moment estimation}the Adam

optimizer}employs the first and second moments of the gradi-
ent to adapt the learning rate for each weight of the U-Net
model. The high-quality GPM GV-MRMS precipitation prod-
ucts for May, June, July, August, and September of 2017–20 are
used for calibration, validation, and testing of the model. The
U-Net model with a mean-square-error (MSE) cost function is
implemented using TensorFlow (version 2.5) and computes uni-
fied device architecture (CUDA) on multiple graphics process-
ing units (GPUs). The details of the model architecture with its
layer characteristics are presented in Table 2. It is important to
acknowledge that training the U-Net model is conducted using
GV-MRMS information.

d. Performance validation

We consider the widely used Pearson correlation coefficient
(CORR), relative bias ratio (RBIAS), root-mean-square error
(RMSE), critical success index (CSI), false alarm ratio (FAR),
probability of detection (POD), volumetric CSI (VCSI), and
volumetric FAR (VFAR) for evaluation of the U-Net surface-
precipitation estimation algorithm performance. The validation
statistics are defined in the appendix.

e. Model’s input permutation importance

In an attempt to understand the importance of the inputs to
the U-Net model, a permutation feature, importance, is de-
fined as a decrease in the model’s bias when a single input
layer (i.e., predictor, an input feature) is replaced with a ran-
dom noise. In other words, the importance of the input fea-
tures is estimated based on the change in the retrieved bias
when one or more input layers no longer contain meaningful
information. In the first step, the benchmark score is defined
as the performance of the model (i.e., calculated mean bias)
with respect to the reference data during the test period.
Then, the mean bias is calculated for the models when differ-
ent combinations of predictors are replaced with random
noises. Each of these altered biases is defined as the permuted
score. The difference between the benchmark and permuted

FIG. 2. A schematic for the convolution of a 2D kernel (K) over a 2D input data (X) with the same padding option;
Y is the response to this convolution example.
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scores for each of the altered inputs is the precipitation rate
bias change, a metric of the input feature importance.

precipitation rate bias change (%)

5
benchmark score (mm h21) 2 permuted score(mm h21)

benchmark score (mm h21)
3 100: (3)

4. Result and discussion

The ABI multispectral remotely sensed information from
0.47 to 11.21 mm, GMI PMW Tbs from emission and scatter-
ing frequencies, and GFS T2m and PWAT are collocated and
used to develop the U-Net algorithm. The quantification and
categorical statistics of the model, benchmarked against MRMS
surface precipitation estimates with the radar quality index
greater than 80%, are reported in Table 3. The table includes
the results corresponding to the test period (June–September
2020), considering the 0.1 mm h21 precipitation rate threshold.
To offer an insight on what can be considered a desirable

performance level of an algorithm, Table 3 lists corresponding
statistics of GPROF, GPROF-NN 3D (hereafter, GPROF-NN),
and GPM DPR retrievals. With a correlation coefficient of 0.56,
false detection rate of 18%, and POD score of 88%, the U-Net
model is found to be successful in the tasks of precipitation de-
tection and rate estimate. The RMSE index of 6.5 mm h21 and
CSI score of 0.81 suggest that model performs well in general
precipitation detection. VCSI analysis indicates that 92% of the
total volume of precipitation events is captured correctly, while
7% is found in the category of false alarms. The corresponding
metrics of the globally calibrated GPROF retrieval confirm the
high potential of the U-Net model. It should be noted that we
utilize different precipitation retrievals during an independent
test period (June–September of 2020) to show the discrepancies
and challenges in current satellite algorithms, especially over
complex surface types.

When compared against the MRMS product, the DPR
captures 93% of the total volume of surface precipitation,
while it is found to have a 20% false alarm score. Retrieved
surface precipitation rates from DPR are 0.48 correlated to
the MRMS product, showing relatively high RMSE with a

FIG. 3. An overview of data preprocessing.
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value of more than 7 mm h21. It should be noted that many
factors limit the performance of DPR, such as significant sur-
face clutter (Durden et al. 2020; Gou et al. 2018; Tang et al.
2017). The number of samples used to calculate verification
metrics for DPR is approximately 1.8 million, while more
than 41 million points are used in each of the PMW-based
products statistics. The U-Net model is trained with respect to
the MRMS precipitation product, targeting the warm season
only. As such, if it is to be called successful, it must outperform

retrievals intended for global all-season products (e.g., GPROF,
DPR). The results presented here support the notion that an
end-to-end DNN U-Net architecture can provide a high-quality
precipitation rate product.

a. Qualitative assessment

As previously noted, one of the advantages of the U-Net
model is the flexibility to process inputs of varying spatial ex-
tents. To achieve this, kernels are applied a different number

TABLE 1. List of satellite- and model-based features used as inputs to precipitation estimation algorithm.

Source Description Original spatial resolution

1 GMI 10.65V GHz 19.4 km 3 32.1 km
2 GMI 18.70H GHz 10.9 km 3 18.1 km
3 GMI 23.80V GHz 9.7 km 3 16 km
4 GMI 36.5V GHz 9.4 km 3 15.6 km
5 GMI 36.5H GHz 9.4 km 3 15.6 km
6 GMI 89 V GHz 4.4 km 3 7.2 km
7 GMI 89H GHz 4.4 km 3 7.2 km
8 GMI 166V GHz 4.1 km 3 6.3 km
9 GMI 166H GHz 4.1 km 3 6.3 km

10 GMI 183.31 6 3V GHz 3.8 km 3 5.8 km
11 G16-ABI 0.47 mm 1 km 3 1 km
12 G16-ABI 0.64 mm 0.5 km 3 0.5 km
13 G16-ABI 0.86 mm 1 km 3 1 km
14 G16-ABI 1.37 mm 2 km 3 2 km
15 G16-ABI 2.24 mm 2 km 3 2 km
16 G16-ABI 3.90 mm 2 km 3 2 km
17 G16-ABI 6.19 mm 2 km 3 2 km
18 G16-ABI 6.93 mm 2 km 3 2 km
19 G16-ABI 7.37 mm 2 km 3 2 km
20 G16-ABI 8.44 mm 2 km 3 2 km
21 G16-ABI 10.33 mm 2 km 3 2 km
22 G16-ABI 11.21 mm 2 km 3 2 km
23 Sun elevation angle Degrees 2 km 3 2 km
24 GFS PWAT Total precipitable water (kg m22) 0.258 3 0.258
25 GFS T2m 2-m temperature (K) 0.258 3 0.258

TABLE 2. U-Net architecture summary. The encoder operates on the input layer to extract robust features, the decoder constructs
the output patterns and pixel values, and the bottleneck mediates between the encoder and decoder sections.

Encoder Bottleneck Decoder
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of times, depending on the input size over the spatial domain,
allowing the output of the convolution operation to scale ac-
cordingly. In the present study, training is performed using
about 110 000 elements of the size 64 pixels 3 64 pixels 3 25
layers (spatial domain: 128 km 3 128 km, 25 input variables).
Yet, the trained model supports various input/output dimen-
sions. To show this practical characteristic of the U-Net
algorithm, one case is visualized in Fig. 4. Figures 4a and 4b
display 4 (of 25) selected input layers to the U-net model:
PMW Tbs at 18.7H and 166H GHz frequencies, and ABI Tbs
at 6.2 and 11.2 mm. These observations are associated with a
GMI orbit (03666) overpass of the U.S. Midwest and parts of
southeast of Canada at 0725 UTC 11 August. The spatial ex-
tent of each input is approximately 158 3 158. The reference
MRMR precipitation rates and the derived precipitation rates
from the U-Net algorithm are shown in Fig. 4c. The presented
case depicts the model’s ability to capture fine-scale patterns
of precipitation within and outside of the training domain
during nighttime (0225 local time). Optimizing the perfor-
mance of the model for the regions outside the training
domain and investigating the nighttime ABI visible bands in-
formation content are beyond the scope of the study (no alter-
ation of the nighttime ABI radiances is performed at any of the
16 bands).

Figure 5 displays a precipitation scene over the portions of
Indiana, Illinois, and Kentucky, observed by ABI and GPM-
CO sensors on 1 August 2020. The event is selected based on
the availability of high-quality reference products and the
presence of complex spatial patterns associated with the de-
veloping convective system. A set of selected U-Net input
layers, shown in the top row, includes Tbs and radiances col-
lected by ABI VIS/6.2-mm bands and GMI 18.7H/166 GHz
channels. The VIS image is composed of three ABI channels,
0.47, 0.64, and 0.86 mm bands (“blue,” “red,” and “vegetation”);
the three opaque ABI infrared bands (6.2–7.3 mm) are affected
mainly by water vapor absorptions. These observations, in-
tended to provide information on the atmospheric moisture
content and temperature, are complemented by the upper-level
water vapor band (;6.2 mm) sensitive to the top layers of the
atmosphere. The same panel depicts Tbs from the low-
frequency 18.7 GHz (emission) PMW band being significantly
affected by land surface radiation (warm colors). In contrast,

the high-frequency 166 GHz GMI channel indicates ice-induced
scattering within radiometric cold areas.

Qualitative comparisons of U-Net–, GPROF-NN–, and
GPROF-retrieved surface precipitation rates to the MRMS and
DPR reference products, as shown in Figs. 5b and 5c, confirm
U-Net’s ability to successfully fuse GEO and LEO (ABI and
GMI) observations and take advantage of automatic spatial fea-
ture extraction using convolutional layers. Both NN-based algo-
rithms, U-Net and GPROF-NN, adequately capture the spatial
patterns of high- and low-intensity precipitation rates. Still, they
slightly underestimate the precipitation rates over the northern
and western parts of the event. Given the visual and general
assessments, next we perform quantitative assessment of the
U-Net algorithm performance.

b. Quantitative assessment

Figure 6 showcases the density scatterplots of U-Net,
GPROF-NN, and GPROF surface precipitation rates (x axis)
versus MRMS observations (y axis) for June–September 2020.
Additionally, it displays the marginal distributions of each prod-
uct as univariate histograms on the vertical and horizontal axes.
Two precipitation types are defined using the MRMS product
typology: 1) stratiform (warm stratiform, warm stratiform when
radar data are above the melting layer, tropical stratiform mix,
and cool stratiform), and 2) convective (hail, and tropical convec-
tive mix). Figure 6 shows the U-Net to MRMS surface precipita-
tion rate correlation coefficients of 0.41 (stratiform) and 0.34
(convective) and multiplicative bias values of 0.97 (stratiform)
and 0.64 (convective). This performance is well within the ex-
pected range of operational retrievals (as documented using
GPROF-NN and GPROF examples). It is worth noting that the
U-Net algorithm is not an exception when it comes to signifi-
cantly underestimating low-intensity (,4 mm h21) and overesti-
mating high-intensity (.10 mm h21) precipitation rates.

c. Assessment of surface precipitation estimation over
different surface types

Figure 7 demonstrates the performance of U-Net, GPROF-NN,
and GPROF-NN algorithms during the test period (June–
September 2020) over four distinct surface types: ocean, land,
orographic, and coastal. The surface types are adopted from the
GPM GPROF, version 07, classification scheme (TELSEM),
grouping the orographic and vegetated surface indices into sin-
gle types named orographic and land, respectively. Given the in-
vestigation is focused on summertime, the classes related to
snow- and ice-covered regions are excluded. Figure 7a indicates
that algorithms tend to underestimate precipitation rates of less
than 3 mm h21 over the ocean surface type. The CORR value
for U-Net is 0.58, with the total multiplicative bias of 0.86. While
the higher correlation coefficient value is expected, the opposite
RBIAS between U-Net and GPROF is likely to be a conse-
quence of different ocean regions used in the training process
(region-specific vs global) of the algorithms. It should be noted
that radar-based GV-MRMS products used for training the
U-Net have limited range over the ocean surface type}a “near-
coast ocean” rather than “open ocean”}which may contribute
to the difference in RBIAS between the U-Net and GPROF

TABLE 3. Performance of surface precipitation products from
U-Net, GPROF, GPROF-NN, and DPR during June–September
2020. For each index, the best result is highlighted in bold.

Index\algorithm
Ideal
value U-Net GPROF GPROF-NN DPR

CORR 1 0.56 0.38 0.37 0.48
RMSE (mm h21) 0 6.46 5.70 5.47 7.33
RBIAS 1 0.98 0.96 0.88 0.88
POD 1 0.88 0.89 0.88 0.92
CSI 1 0.81 0.58 0.62 0.81
VCSI 1 0.92 0.83 0.79 0.93
FAR 0 0.18 0.41 0.37 0.20
VFAR 0 0.07 0.16 0.20 0.05
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ocean precipitation rates. The scatterplots and marginal distribu-
tions of precipitation rates show that U-Net performs well in de-
tecting precipitation over land surfaces (Fig. 7b) with a correlation
coefficient value of 0.57 and a multiplicative bias of 0.93.

Figures 7c and 7d demonstrate that the U-Net model is
skillful in detecting the occurrence and amount of precipita-
tion events over complex orographic and coastline regions.
Significant discrepancies between the spread and general dis-
tribution of satellite retrievals and MRMS products are dis-
played across these complex regions. The CORR and RBIAS
values for precipitation estimates derived from U-Net are 0.57
and 0.93, respectively. Over the coastlines, surface precipitation
retrievals from U-Net are 0.59 correlated to the references. The

distribution of U-Net precipitation rates shows a similar spread
compared to MRMS observations with the RBIAS value of
0.90. The retrieved surface precipitation distributions from
GPROF and GPROF-NN models over all surface types show
comparable marginal distribution. The presented results show
the difficulties in retrieving surface precipitation systems by sat-
ellite algorithms over complex regions but suggest that addition
of the ABI information (the U-Net retrieval) may be a key to
finding a solution to this problem. Particularly, U-Net takes ad-
vantage of high-spatial-resolution GEO information to solve
the challenge of PMW-only precipitation retrievals over mixed
surface types where large PMW footprints tend to smooth out
the variability in radiometric properties of the surface.

FIG. 4. Precipitation system observed at 0725 UTC 11 Aug 2020, over the U.S. Midwest. (a) GMI 18.7H and 166H GHz
frequencies Tbs; (b) ABI 6.2 and 11.2 mmTbs; (c) MRMS surface precipitation product and U-Net output.
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d. Input feature importance

Aiming to assess the impact of the input features on the
U-Net model performance, similar to Gorooh et al. (2022a), a
simple strategy is used to rank the model’s input information
content (predictors) with respect to their importance. As de-
scribed in methodology, the trained model is used to retrieve
the precipitation rate twice: the first time (baseline run) using
all available inputs, and the second using random noise to re-
place one or more input layers. The change in the bias be-
tween the two outputs is then used to rank the importance of
the input features (the higher the change, the stronger the im-
pact of the input layer). In Fig. 8, the inputs (y axis) located at
the top part of the graph have more impact on the model per-
formance, while the inputs positioned toward the bottom part
of the chart have less impact on the retrieved precipitation.
The U-Net model favors PMW information in scattering

frequency bands, including 89V/H and 166V/H GHz. An ob-
vious reason is that most retrieved precipitation is found over
the land. Hence, the model relies on the scattering signal de-
tected by high PMW frequencies responsive to the ice cloud
content.

Next on the list are the ABI’s 2.24 and 11.21 mm bands, fol-
lowed by the PMW 18.7 GHz band. The 2.24 mm band is pri-
marily sensitive to the cloud particle size and indicates the
characteristics of cloud developments. The IR 11.21-mm band
is similar to the legacy IR 10.7 mm band in cloud-overshooting-
tops detections, although, in the 11.21 mm channel, there is
more energy absorption by water vapor than in the 10.7 mm
band. Over land, the 18.7 GHz band measurements are over-
whelmed by the surface emissivity variability; thus, it provides
relatively persistent information on the surface types to the
model. Furthermore, this PMW band perfectly districts precip-
itation signatures over the radiometrically cold water and

FIG. 5. Visualization of (a) the ABI visible bands’ composition (0.47, 0.64, and 0.86 mm bands), ABI’s 6.2 mm, GMI’s 18.7H GHz, and
GMI’s 166H GHz; (b) MRMS surface precipitation rate (reference) and GPM DPR products; (c) retrieved surface precipitation rates
from U-Net, GPROF-NN, and GPROF-NN at 1940 UTC 1 Aug 2020.
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ocean backgrounds. These are followed by the VIS and NIR
channels with approximate central wavelengths of 0.47–1.37 mm
followed by water vapor bands (6.19–7.37 mm). Surface fea-
tures are distinguishable in the daytime observations from
blue (0.47 mm) and red (0.64 mm) VIS bands, while 1.37 mm as
a reflective band is also able to detect low-level and cirrus cloud
types during the day. The IR ABI water vapor bands provide in-
formation about the structure of the atmosphere in terms of tem-
perature and moisture content at three levels. The 6.19 mm band,
known as upper-level water vapor, provides information on po-
tential areas for turbulence and upper-tropospheric winds, while
6.93 and 7.37 mm bands detect lower moisture content when the
upper atmosphere is relatively dry. The ABI’s 7.37 mm band also
offers valuable information about convective cloud and convec-
tion initiations to the U-Net model. After these channels, the re-
sults indicate that the U-Net model sees GFS PWAT and T2m
variables as the next most important input parameters. In the
case of “.89H/V GHz,” there is a drop in the performance of
the model. However, it is found that using random noise to re-
place the input frequencies above 89H/V GHz channels does not
alter the performance of the model severely (the .89H/V GHz
scenario is located in the lower part of the plot in Fig. 8). There-
fore, we believe that applying the U-Net algorithm to other GPM
conical-scanning radiometers, with reduced information content,
may not significantly limit the performance of the precipitation al-
gorithm. Analyzing the U-Net algorithm’s ability to perform on a
non-GMI input [e.g., the case of Advanced Microwave Scanning

Radiometer-2 (AMSR2) PMW bands] is beyond the scope of
this study.

5. Summary and conclusions

In this study, we investigate the applicability and potential
of a U-Net architecture in the task of fusing multispectral, re-
motely sensed information from GEO and LEO sensors with
GFS variables to retrieve summertime surface precipitation
rate. An end-to-end deep learning technique is used to train
a U-Net–like architecture and bypass the intermediate or feature-
engineered stages typically seen in the process-oriented methods.
The study’s distinct goal was to test a U-net architecture suitability
for a task of fusing complementing information content origi-
nating from various source to retrieve the summertime sur-
face precipitation rate at high spatial resolution. In this
effort, multiple satellite products providing observations in
the VIS, NIR, and IR portions of the electromagnetic spec-
trum are integrated with PMW Tbs and auxiliary T2m and
PWAT variables from the GFS model. The model is trained
using ground-based radar observations collected during the
period May–September 2017–19 over the eastern part of the
CONUS, to deliver a 2-km-resolution output. The algorithm
performance is assessed for ability to capture fine spatial pat-
terns of surface precipitation events in different regimes (strat-
iform vs convective) and over different surface types during an

FIG. 6. Performance of U-Net, GPROF-NN, and GPROF surface precipitation retrievals with respect to MRMS. (a) Stratiform and
(b) convective regime density plots for June–September 2020. The distributions of each product are shown next to the corresponding axes.
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FIG. 7. Performance of surface precipitation retrievals for U-Net, GPROF-NN, and GPROF with respect to MRMS precipita-
tion rates over (a) ocean, (b) land, (c) orographic, and (d) coastal surface types during June–September 2020. The distributions of
each product are shown next to the corresponding axes.
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independent test period (June–September 2020). The conclu-
sions are summarized as follows:

• The U-Net model is skillful in terms of overall statistical in-
dices and categorical and volumetric verification metrics.
Our model reduces false alarms and improves general de-
tection skills (e.g., CSI and VCSI) while showing relatively
high total RMSE values.

• The performance of the U-Net algorithm highlights its ability
to extract fine-scale spatial patterns of surface precipitation
events at levels comparable to those seen in the state-of-the-
art operational retrievals.

• Being a fully convolutional network that uses an automatic
feature extraction approach, the model is flexible to process
inputs of variable sizes and capable of fusing the swath-
based PMW footprints with high spatiotemporal resolution
and multispectral ABI images.

• The end-to-end DNN algorithm (a purely machine learning
approach) can reach high accuracy in precipitation rate es-
timates over different regimes. The U-Net precipitation
rate model is found to perform slightly better over strati-
form than convective regimes.

• The U-Net algorithm performs well in capturing the occur-
rence and amount of precipitation events over complex
orographic and coastal regions. The results demonstrate
that fusing high-spatiotemporal-resolution observations
from ABI and GFS auxiliary variables with LEO PMW ob-
servations enhances the spatial detection of surface precipi-
tation during summertime over land, ocean, and coastal
surface types under all precipitation regimes.

• Input-layer importance analysis confirms the expected or-
igin of the information content, indicating that the model

mainly relies on scattering frequencies from the LEO
GMI radiometer, followed by 2.24 and 11.21 mm from
GEO-based ABI. Afterward, ABI’s VIS, NIR, and wa-
ter vapor IR bands are listed as important inputs to our
model.

The presented results reveal the potential U-Net architecture
has in delivering high-spatial-resolution surface precipitation
rate estimation by integrating sets of VIS, NIR, and IR informa-
tion with PMW footprints along with PWAT and T2m auxiliary
variables. The efficient end-to-end algorithm uses an automatic
feature-extraction approach to extract and fuse LEO and GEO
passively-sensed information to offer consistent results at low
computational cost for high-spatial-resolution precipitation rate
estimation. The presented framework is readily expandable to
similar new generations of imagers, such as AHI, just as the con-
siderations made here on the GMI can be applied to other cur-
rent and future GPM conical-scanning PMW radiometers (e.g.,
AMSR2/3, MWI).
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APPENDIX

Evalutation Metrics

The performance of precipitation retrievals is evaluated
with Pearson CORR (perfect value 5 1), RBIAS (ideal
value 5 1), and RMSE (ideal value 5 0), as follows:

CORR 5
1
n

∑
n

i51
(Pi 2 P)(Oi 2 O)�����������������

∑
n

i51
(Pi 2 P)2

√ ������������������
∑
n

i51
(Oi 2 O)2

√

RBIAS 5
1
n
∑
n

i51

Pi

Oi

RMSE 5

���������������������
1
n
∑
n

i51
(Pi 2 Oi)2

√
,

where Pi represents the ith satellite precipitation estimate,
Oi refers to the corresponding reference observation, and n
denotes the total number of samples. The perfect RBIAS
value is 1. The POD (ideal value 5 1), FAR (ideal value 5 0),
and CSI (ideal value 5 1) are used for categorical assessments
and are defined as follows:

POD 5
H

H 1 M
,

FAR 5
F

F 1 H

CSI 5
H

H 1 F 1 M
,

where H (hit) indicates that both the precipitation algo-
rithm and reference observation detect the event, M (miss)
identifies events observed by reference but missed by the
precipitation estimation algorithm, and F (false alarm) indi-
cates events not seen by reference yet detected by the pre-
cipitation estimation model. The VFAR and VCSI are used
for volumetric categorical evaluation metrics. We consider
0.1 mm h21 as the threshold t above which the volumetric
indices are computed (Aghakouchak and Mehran 2013):

VFAR 5

∑
n

i51
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,

VCSI 5
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:
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Meyer, H., M. Kühnlein, C. Reudenbach, and T. Nauss, 2017: Re-
vealing the potential of spectral and textural predictor variables
in a neural network-based rainfall retrieval technique. Remote
Sens. Lett., 8, 647–656, https://doi.org/10.1080/2150704X.2017.
1312026.

Min, M., and Coauthors, 2019: Estimating summertime precipita-
tion from Himawari-8 and global forecast system based on
machine learning. IEEE Trans. Geosci. Remote Sens., 57,
2557–2570, https://doi.org/10.1109/TGRS.2018.2874950.

Nguyen, P., E. J. Shearer, M. Ombadi, V. A. Gorooh, K. Hsu, S. Sor-
ooshian, W. S. Logan, and M. Ralph, 2020a: PERSIANN Dy-
namic Infrared–Rain Rate model (PDIR) for high-resolution,
real-time satellite precipitation estimation. Bull. Amer. Meteor.
Soc., 101, E286–E302, https://doi.org/10.1175/BAMS-D-19-0118.1.

}}, and Coauthors, 2020b: PERSIANN Dynamic Infrared–Rain
Rate (PDIR-Now): A near-real-time, quasi-global satellite
precipitation dataset. J. Hydrometeor., 21, 2893–2906, https://
doi.org/10.1175/JHM-D-20-0177.1.

Ouallouche, F., M. Lazri, and S. Ameur, 2018: Improvement of
rainfall estimation from MSG data using random forests clas-
sification and regression. Atmos. Res., 211, 62–72, https://doi.
org/10.1016/j.atmosres.2018.05.001.

Pfreundschuh, S., P. J. Brown, C. D. Kummerow, P. Eriksson, and
T. Norrestad, 2022: GPROF-NN: A neural-network-based im-
plementation of the Goddard profiling algorithm. Atmos. Meas.
Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022.

G OROOH E T A L . 1953NOVEMBER 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:01 PM UTC

https://doi.org/10.1109/JSTARS.2015.2403303
https://doi.org/10.1109/JSTARS.2015.2403303
https://doi.org/10.1109/LGRS.2019.2952287
https://doi.org/10.1109/LGRS.2019.2952287
https://doi.org/10.48550/arXiv.2108.06868
https://doi.org/10.1029/97JD01210
https://doi.org/10.1175/BAMS-D-20-0014.1
https://doi.org/10.1175/BAMS-D-20-0014.1
https://doi.org/10.1175/JHM-D-21-0194.1
https://doi.org/10.1175/JHM-D-22-0066.1
https://doi.org/10.1016/j.atmosres.2017.12.017
https://doi.org/10.1016/j.atmosres.2017.12.017
https://doi.org/10.3390/rs11192193
https://doi.org/10.3390/rs11192193
https://doi.org/10.2151/jmsj.2019-040
https://doi.org/10.2151/jmsj.2019-040
https://doi.org/10.1175/JAM2173.1
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.1175/JHM-D-11-0139.1
https://doi.org/10.1175/JHM-D-11-0139.1
https://doi.org/10.1175/JHM-D-15-0186.1
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1029/2020EA001423
https://doi.org/10.1029/2020EA001423
https://doi.org/10.3390/rs12081339
https://doi.org/10.3390/rs12081339
https://doi.org/10.1016/j.wace.2022.100433
https://doi.org/10.1016/j.wace.2022.100433
https://doi.org/10.1080/2150704X.2017.1312026
https://doi.org/10.1080/2150704X.2017.1312026
https://doi.org/10.1109/TGRS.2018.2874950
https://doi.org/10.1175/BAMS-D-19-0118.1
https://doi.org/10.1175/JHM-D-20-0177.1
https://doi.org/10.1175/JHM-D-20-0177.1
https://doi.org/10.1016/j.atmosres.2018.05.001
https://doi.org/10.1016/j.atmosres.2018.05.001
https://doi.org/10.5194/amt-15-5033-2022


Prigent, C., F. Aires, and W. B. Rossow, 2003: Retrieval of surface
and atmospheric geophysical variables over snow-covered
land from combined microwave and infrared satellite obser-
vations. J. Appl. Meteor., 42, 368–380, https://doi.org/10.1175/
1520-0450(2003)042,0368:ROSAAG.2.0.CO;2.

Ronneberger, O., P. Fischer, and T. Brox, 2015: U-Net: Convolu-
tional networks for biomedical image segmentation. Medical
Image Computing and Computer-Assisted Intervention–MICCAI
2015, N. Navab et al., Eds., Lecture Notes in Computer Science,
Vol. 9351, Springer, 234–241.

Rukundo, O., and H. Cao, 2012: Nearest neighbor value inter-
polation. Int. J. Adv. Comput. Sci. Appl., 3, 25–30, https://doi.
org/10.14569/IJACSA.2012.030405.

Sadeghi, M., P. Nguyen, K. Hsu, and S. Sorooshian, 2020: Improving
near real-time precipitation estimation using a U-Net convolu-
tional neural network and geographical information. Environ.
Modell. Software, 134, 104856, https://doi.org/10.1016/j.envsoft.
2020.104856.

Saemian, P., and Coauthors, 2021: Comprehensive evaluation of
precipitation datasets over Iran. J. Hydrol., 603, 127054,
https://doi.org/10.1016/j.jhydrol.2021.127054.
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